avatar

🧊foril

avatar

🧊foril

P 问题与 NP 问题

2022-11-21 -

最近多次在各个领域上听到 P 问题和 NP 问题等论述,于是打算自己浅浅了解一下有关方面的内容。以下内容多来自于网络博客的摘抄总结,原文章见参考章节。

P 问题

当我们在解决一个问题时,我们选择的算法通常都需要是多项式级的复杂度,非多项式级的复杂度需要的时间太多,往往会超时,除非是数据规模非常小。
自然地,人们会想到一个问题:会不会所有的问题都可以找到复杂度为多项式级的算法呢?很遗憾,答案是否定的。有些问题甚至是不可解的。

针对能够找到多项式级复杂度的问题,我们引入 P 类问题的概念:如果一个问题可以找到一个能在多项式的时间里解决它的算法,那么这个问题就属于 P 问题。P 是英文单词多项式的第一个字母。

NP 问题

接下来引入NP问题的概念。这个就有点难理解了,或者说容易理解错误。在这里强调,NP问题不是非P类问题。NP问题是指可以在多项式的时间里验证一个解的问题。NP问题的另一个定义是,可以在多项式的时间里猜出一个解的问题。
比方说,我 RP 很好,在程序中需要枚举时,我可以一猜一个准。现在某人拿到了一个求最短路径的问题,问从起点到终点是否有一条小于 100 个单位长度的路线。它根据数据画好了图,但怎么也算不出来,于是来问我:你看怎么选条路走得最少?我说,我 RP 很好,肯定能随便给你指条很短的路出来。然后我就胡乱画了几条线,说就这条吧。那人按我指的这条把权值加起来一看,嘿,神了,路径长度 98,比 100 小。于是答案出来了,存在比 100 小的路径。别人会问他这题怎么做出来的,他就可以说,因为我找到了一个比 100 小的解。
在这个题中,找一个解很困难,但验证一个解很容易。验证一个解只需要 O(n)O(n) 的时间复杂度,也就是说我可以花 O(n)O(n) 的时间把我猜的路径的长度加出来。那么,只要我 RP 好,猜得准,我一定能在多项式的时间里解决这个问题。我猜到的方案总是最优的,不满足题意的方案也不会来骗我去选它。
这就是 NP 问题。当然有不是 NP 问题的问题,即你猜到了解但是没用,因为你不能在多项式的时间里去验证它。
下面要举的例子是一个经典的例子,它指出了一个目前还没有办法在多项式的时间里验证一个解的问题。很显然,前面所说的 Hamilton 回路是NP问题,因为验证一条路是否恰好经过了每一个顶点非常容易。但我要把问题换成这样:试问一个图中是否不存在 Hamilton 回路。这样问题就没法在多项式的时间里进行验证了,因为除非你试过所有的路,否则你不敢断定它“没有 Hamilton 回路”。

为什么要定义 NP 问题

之所以要定义 NP 问题,是因为通常只有 NP 问题才可能找到多项式的算法。我们不会指望一个连多项式地验证一个解都不行的问题存在一个解决它的多项式级的算法。相信读者很快明白,信息学中的号称最困难的问题——“ NP 问题”,实际上是在探讨 NP 问题与 P 类问题的关系。

P 问题和 NP 问题的关系

很显然,所有的 P 类问题都是 NP 问题。也就是说,能多项式地解决一个问题,必然能多项式地验证一个问题的解——既然正解都出来了,验证任意给定的解也只需要比较一下就可以了。关键是,人们想知道,是否所有的 NP 问题都是 P 类问题。现在,所有对NP问题的研究都集中在一个问题上,即究竟是否有 P=NP ?通常所谓的“ NP 问题”,其实就一句话:证明或推翻 P=NP。

目前为止这个问题还“啃不动”。但是,一个总的趋势、一个大方向是有的。人们普遍认为,P=NP 不成立,也就是说,多数人相信,存在至少一个不可能有多项式级复杂度的算法的 NP 问题。人们如此坚信 P≠NP 是有原因的,就是在研究 NP 问题的过程中找出了一类非常特殊的 NP 问题叫做 NP-完全问题,也即所谓的 NP-Complete 问题。正是 NPC 问题的存在,使人们相信 P≠NP。下文将花大量篇幅介绍 NPC 问题,你从中可以体会到 NPC 问题使 P=NP 变得多么不可思议。

NPC 问题

约化

为了说明 NPC 问题,我们先引入一个概念——约化(Reducibility,有的资料上叫“归约”)。
简单地说,一个问题 A 可以约化为问题 B 的含义即是,可以用问题 B 的解法解决问题 A,或者说,问题 A 可以“变成”问题 B。《算法导论》上举了这么一个例子。比如说,现在有两个问题:求解一个一元一次方程和求解一个一元二次方程。那么我们说,前者可以约化为后者,意即知道如何解一个一元二次方程那么一定能解出一元一次方程。我们可以写出两个程序分别对应两个问题,那么我们能找到一个“规则”,按照这个规则把解一元一次方程程序的输入数据变一下,用在解一元二次方程的程序上,两个程序总能得到一样的结果。
“问题 A 可约化为问题 B”有一个重要的直观意义:B 的时间复杂度高于或者等于 A 的时间复杂度。也就是说,问题 A 不比问题 B 难。这很容易理解。既然问题 A 能用问题 B 来解决,倘若 B 的时间复杂度比 A 的时间复杂度还低了,那 A 的算法就可以改进为 B 的算法,两者的时间复杂度还是相同。正如解一元二次方程比解一元一次方程难,因为解决前者的方法可以用来解决后者。
很显然,约化具有一项重要的性质:约化具有传递性。如果问题 A 可约化为问题 B,问题 B 可约化为问题 C,则问题 A 一定可约化为问题 C。

现在再来说一下约化的标准概念就不难理解了:如果能找到这样一个变化法则,对任意一个程序 A 的输入,都能按这个法则变换成程序 B 的输入,使两程序的输出相同,那么我们说,问题 A 可约化为问题 B。 当然,我们所说的“可约化”是指的可“多项式地”约化(Polynomial-time Reducible),即变换输入的方法是能在多项式的时间里完成的。约化的过程只有用多项式的时间完成才有意义。

好了,从约化的定义中我们看到,一个问题约化为另一个问题,时间复杂度增加了,问题的应用范围也增大了。通过对某些问题的不断约化,我们能够不断寻找复杂度更高,但应用范围更广的算法来代替复杂度虽然低,但只能用于很小的一类问题的算法。再回想前面讲的 P 和 NP 问题,联想起约化的传递性,自然地,我们会想问,如果不断地约化上去,不断找到能“通吃”若干小 NP 问题的一个稍复杂的大 NP 问题,那么**最后是否有可能找到一个时间复杂度最高,并且能“通吃”所有的 NP 问题的这样一个超级 NP 问题?**答案居然是肯定的。
也就是说,存在这样一个 NP 问题,所有的 NP 问题都可以约化成它。换句话说,只要解决了这个问题,那么所有的 NP 问题都解决了。这种问题的存在难以置信,并且更加不可思议的是,这种问题不只一个,它有很多个,它是一类问题。这一类问题就是传说中的 NPC 问题,也就是 NP-完全问题。NPC 问题的出现使整个 NP 问题的研究得到了飞跃式的发展。我们有理由相信,NPC 问题是最复杂的问题。再次回到全文开头,我们可以看到,人们想表达一个问题不存在多项式的高效算法时应该说它“属于 NPC 问题”。

NPC 问题的定义非常简单。同时满足下面两个条件的问题就是 NPC 问题:

  • 它得是一个 NP 问题;
  • 所有的 NP 问题都可以约化到它。

证明一个问题是 NPC 问题也很简单:

  • 先证明它至少是一个NP问题;
  • 再证明其中一个已知的 NPC 问题能约化到它(由约化的传递性,则 NPC 问题定义的第二条也得以满足;至于第一个 NPC 问题(逻辑电路问题)是怎么来的,下文将介绍),这样就可以说它是 NPC 问题了。 既然所有的 NP 问题都能约化成 NPC 问题,那么只要任意一个 NPC 问题找到了一个多项式的算法,那么所有的 NP 问题都能用这个算法解决了,NP 也就等于 P 了。因此,给 NPC 找一个多项式算法太不可思议了。因此,前文才说,“正是 NPC 问题的存在,使人们相信 P≠NP”。我们可以就此直观地理解,NPC 问题目前没有多项式的有效算法,只能用指数级甚至阶乘级复杂度的搜索。

NP-Hard 问题

顺便讲一下 NP-Hard 问题。NP-Hard 问题是这样一种问题,它满足 NPC 问题定义的第二条但不一定要满足第一条(就是说,NP-Hard 问题要比 NPC 问题的范围广)。
NP-Hard 问题同样难以找到多项式的算法,但它不列入我们的研究范围,因为它不一定是 NP 问题即使 NPC 问题发现了多项式级的算法,NP-Hard 问题有可能仍然无法得到多项式级的算法。事实上,由于 NP-Hard 放宽了限定条件,它将有可能比所有的 NPC 问题的时间复杂度更高从而更难以解决

逻辑电路问题

不要以为 NPC 问题是一纸空谈。NPC 问题是存在的。确实有这么一个非常具体的问题属于 NPC 问题。下文即将介绍它。 下文即将介绍逻辑电路问题。这是第一个 NPC 问题。其它的 NPC 问题都是由这个问题约化而来的。因此,逻辑电路问题是 NPC 类问题的“鼻祖”。

逻辑电路问题是指的这样一个问题:给定一个逻辑电路,问是否存在一种输入使输出为True。

逻辑电路问题属于 NPC 问题。这是有严格证明的。它显然属于 NP 问题,并且可以直接证明所有的 NP 问题都可以约化到它(不要以为 NP 问题有无穷多个将给证明造成不可逾越的困难)。证明过程相当复杂,其大概意思是说任意一个 NP 问题的输入和输出都可以转换成逻辑电路的输入和输出(想想计算机内部也不过是一些 0 和 1 的运算),因此对于一个 NP 问题来说,问题转化为了求出满足结果为 True 的一个输入(即一个可行解)。

有了第一个 NPC 问题后,一大堆 NPC 问题就出现了,因为再证明一个新的 NPC 问题只需要将一个已知的 NPC 问题约化到它就行了。后来,Hamilton 回路成了 NPC 问题,TSP 问题也成了 NPC 问题。现在被证明是 NPC 问题的有很多,任何一个找到了多项式算法的话所有的 NP 问题都可以完美解决了。因此说,正是因为 NPC 问题的存在,P=NP 变得难以置信。P=NP 问题还有许多有趣的东西,有待大家自己进一步的挖掘。

参考